030621 New publi

Influence of wide-pulse neuromuscular electrical stimulation frequency and superimposed tendon vibration on occurrence and magnitude of extra torque

Authors: Loïc Espeit, Vianney Rozand, Guillaume Y Millet, Julien Gondin, Nicola A Maffiuletti, Thomas Lapole.

Published: 03 June 2021 - J Appl Physiol (1985).

ABSTRACT

Low-frequency and high-frequency wide-pulse neuromuscular electrical stimulation (NMES) can generate extra-torque (ET) via afferent pathways. Superimposing tendon vibration (TV) to NMES can increase the activation of these afferent pathways and favour ET generation. Knowledge of the characteristics of ET is essential to implement these stimulation paradigms in clinical practice. Thus, we aimed at investigating the effects of frequency and TV superimposition on the occurrence and magnitude of ET in response to wide-pulse NMES. NMES-induced isometric plantar flexion torque was recorded in 30 healthy individuals who performed five NMES protocols: wide-pulse low-frequency (1 ms; 20 Hz; WPLF) and wide-pulse high-frequency (1 ms; 100 Hz; WPHF) without and with superimposed TV (1 mm; 100 Hz) and conventional NMES (50 µs; 20 Hz; reference protocol). Each NMES protocol began with an adjustment of NMES intensity in order to reach 10% of maximal voluntary contraction then consisted of three 20-s trains interspersed by 90 s of rest. The ET occurrence was similar for WPLF and WPHF (p=0.822). In the responders, the ET magnitude was greater for WPHF than WPLF (p<0.001). There was no effect of superimposed TV on ET characteristics. This study reported an effect of NMES frequency on ET magnitude, whereas TV superimposition did not affect this parameter. In the context of our experimental design decisions, the present findings question the clinical use of wide-pulse NMES and its combination with superimposed TV. Yet, further research is needed in order to maximize force production through the occurrence and magnitude of ET.

Keywords : Cluster analysis; Extra-force; NMES; Responders; Triceps surae.

Full text link